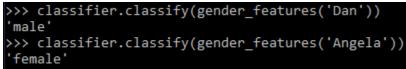
import the necessary packages import nltk from nltk.corpus import names

#looks at final letter of a given name with theory that gender can be identified with last letter.

#returns last letter of name
def gender_features(word):

return{'last_letter': word[-1]}


#prepare a list of examples and corresponding class labels

labeled_names = ([(name, 'male') for name in names.words('male.txt')] +
[(name, 'female') for name in names.words('female.txt')])
import random
random.shuffle(labeled_names)

#process the names data and divide list into a training and test set which is used in naïve Bayes #classifier

featuresets = [(gender_features(n), gender) for (n, gender) in labeled_names]
train_set, test_set = featuresets[500:], featuresets[:500]
classifier = nltk.NaiveBayesClassifier.train(train_set)

#Test Results of classifer:

#Evaluate classifier on larger amount of data showing almost 75% accuracy

```
>>> print(nltk.classify.accuracy(classifier, test_set))
0.746
```

#Most effective features found in distinguishing names' genders #shows likelihood ratios (a is almost 37 times more likely to be female than male).

<pre>>>> classifier.show_most_informati Most Informative Features</pre>	ve_features(5)
last_letter = 'a'	female : male = 36.5 : 1.0
last_letter = 'k'	male : female = 33.0 : 1.0
last_letter = 'v'	male : female = 18.8 : 1.0
last_letter = 'f'	male : female = 16.1 : 1.0
last_letter = 'p'	male : female = 12.0 : 1.0